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Field Solution for
with Annular

Radial Waveguides
Discontinuities

BAHMAN AZARBAR, MEMBER, IEEE, AND LOTFOLLAH SHAFAI

Abstract—A method is established which gives the internal field of a
radial waveguide in the presence of annular-type slots on the conducting
walls or metallic scatterers inside the guide. The exciting ficld can have a
general form, and the dielectric constant of the region could be lossy or
lossless. To obtain a solution, the induced currents (magnetic current in
case of slot-type discontinuity) over the scattering bodies are expanded
into a finite series of suitable basis functions with unknown coefficients.
The total number of these functions is directly related to the electrical
dimensions of the scatterers. The complex coefficients are then obtained
by employing the appropriate Green’s functions and an application of the
boundary conditions over the scattering bodies. The method is then applied
to the problem of coupling between two radials waveguides by annular
slots on the common boundary. It is shown that in general, higher order
modes have significant effect on the solution, and for a precise evaluation
of the field their contribution must also be included.

I. INTRODUCTION

Y WO-DIMENSIONAL arrangement of slots or con-
ducting plates to form resonant arrays are of practi-
cal interest for applications such as bandpass or bandstop
filters. Within a certain frequency band the transmission
coefficient of the array can vary from unity to zero and its
resonance frequency and bandwidth may be controlled by
varying the characteristic dimensions of the array [1]-[3].
So far, the subject matter is investigated extensively for
the cases where the basic array element has rectangular,
circular, or cross-shape geometries. However, little infor-
mation is available for the case where the scattering body
is of annular shape.
In the present work, using a boundary value treatment,
a method of solution is established which gives the inte-
rior field of a radial waveguide containing annular slots
on its surface or annular metallic plates within the guide
structure. A solution for the case in which both type of
discontinuities are present can simply be obtained by
superposing the two set of solutions. The application of
the boundary conditions over the slots and the conducting
bodies for determining the currents (electric and mag-
netic) then ensures the electromagnetic coupling between
the two set of solutions. The exciting source is placed at
the center of the radial waveguide and its field may be of
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Fig. 1. Current ring in a radial waveguide (impulse response).

a general nature. The slots and plates are assumed to be
electrically thin enough as to suppress radially directed
induced currents over them. Thus the induced surface
currents (electric and magnetic) on the surfaces of the
array elements are in the azimuthal direction.

We develop the solution by first constructing ap-
propriate Green’s functions describing the impulse re-
sponse to an electric (or magnetic) current ring of strength
I located at p==p’, Fig. 1. The final formulation of the
problem is then obtained by an integration of the impulse
response over the induced source distribution (surface of
the scatterer). Depending on the electrical dimension of
the element, the induced current may be expressed in
terms of a finite sum of a suitable set of basis functions
with unknown coefficients. These constants are then ob-
tained by an application of the boundary conditions over
the surface of the scatterer. Depending on the required
degree of accuracy of the solution and the electrical width
of each element, the induced current can be represented
by variety of expressions [4]. For electrically narrow slots
(or plates), current distribution over each element may be
assumed to be constant with respect to p. In fact, Wait
and Hill [5], [6], by considering the problem of TEM
coupling by a circumferential slot on a coated coaxial
cable, have shown that differences between the results of
higher order approximations for the aperture field distri-
bution and the constant field model are inconsequential.
Thus using the constant field approximation, each ele-
ment of the array is characterized by a complex constant
which is yet to be determined by an application of the
boundary conditions.

For a waveguide-fed slot array, Fig. 2, in which aper-
tures are fed successively by a traveling wave, the effect of
the mutual coupling among the slots cannot be generally
ignored. In the methods based on the waveguide transmis-
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Fig. 2. Two typical coupled radial waveguides of infinite extent.

sion-line concept, the coupling between the array elements
is usually accounted for only the dominant propagating
mode, that is, totally ignoring the effects of higher order
modes created in the vicinity of the slot discontinuities.
Furthermore, the coupling due to the external field is
generally overlooked. However, as it will be shown later,
depending on the arrangement of the slots and their
electrical dimensions, the external coupling can become so
strong as to recouple part of the radiated power back into
the guide containing the exciting source. An equivalent
transmission-line representation then gives a negative
radiation conductance for the respective member (or
members) of the array. The contribution of the higher
order modes can also become appreciable as to turn a
resonant slot, when radiating by itself, into a reactive
element. A distinct advantage of the present approach is
the fact that all mutual coupling effects and the higher
order modes are incorporated automatically in the solu-
tion. This is achieved by the simultaneous evaluation of
the field unknown coefficients through the application of
the boundary conditions.

II. PrROBLEM FORMULATION AND SOLUTION

A. Constuction of Green’s Functions, Magnetic Ring

In deriving the appropriate Green’s functions for the
problem depicted in Fig. 1, we essentially follow a similar
approach taken by Collin [7] in which field radiated by a
current filament in a cylindrical waveguide is derived for
the case when propagation is taken place in a cylindrical
tube. The basic principle is to expand the radiated field in
terms of a suitable set of waveguide modes with unknown
coefficients. These coefficients are then determined by an
application of the Lorentz Reciprocity theorem.

Consider the geometry shown in Fig. 1 formed by a
radial waveguide of thickness a. The constitutive parame-
ters of the medium between the perfectly conducting
planes are € and u. We assume the guide is infinite extent
in the p direction, resulting in a zero reflection coefficient.
In practice a matched load may simulate this condition.
The source is a magnetic filament of strength I, (¢), char-
acterized by

Tn(®)=1,(#)8(0—p)8(z = )& (1)

where I,(¢) is a general continuous function of the
azimuthal angle ¢ and p’ and z’ are the coordinates of the
source. A time variation of exp(jwr) is assumed and
suppressed throughout. The source function may be ex-
panded in a Fourier series of the form:
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I(¢)= > (a,cosnd+b,sinng), 0<¢p<27 (2)

n=0

where a, and b, are the Fourier coefficients. The source
singularity at p=p’ and z =2z’ suggests dividing the region
inside the guide into two regions separated by the source
plane S’, namely, region I for p<p’ and region II for
o’ < p. Considering the finiteness of the fields in region I
and the radiation condition in region II would lead us to
the following expressions for the wave functions:

Vo= > > (a,cosnd+ b, sinng)

n=0 m=0
'COS(-’-n—WZ) urfmJn(kpmp)a P<P/ (3)
a /| Us HP(k,,p0),  p>p
[>+] o0
Yh= > > n(b,cosne—a,sinng)
n=0 m=0
L _’71‘71 urzn']n(kpmp): P<Pl (4)
Sm( a Z) U H®(k > o
in H D (K ) p>p

where the subscripts e and 4 refer to the TM and TE
fields, respectively, and

e[|

k=wVen . (5)

An application of the Lorentz Reciprocity theorem [8] to a
volume ¥V bounded by the conducting plates and two
arbitrarily located cylindrical surfaces S, and S, in re-
gions I and II, respectively, leads to

FEx B Ex i = [ (= BT~ ) do
S Vv

(6)

where the subscript @ represents the auxiliary fields and
their sources, 7 is the inward unit normal of the closed
boundary S, and J,, is given by (1) and (2). In (6), as long
as the auxiliary fields satisfy the Maxwell’s equations, we
are free to select their form to facilitate the derivation of
the solution. We, therefore, choose two separate sets of
modes, where each set consists of two single modes of TE
and TM types which are the solutions of the source
free-wave equations in volume V. Hence,

)
¥ =(a,coslp+ b;sinlp) cos ( % z)J,(kap)
(7a)
W = (b, cos I¢ — a, sin I$) sin ( Baz Z)Jl(kppp)
V¢ = (a,coslp+ b,sinlp) cos (p%r z)H}Z)(Ippp)
b)
V" = I(b,cos g — asin Ip) sin( ’ia”— z)HI(Z)(kPPp).

Taking the auxiliary wave functions represented by (7a)
and after some algebraic manipulation, (6) is transformed
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to the following form:

_ wepe,™
[Petyi—ntyi] = 2ak2,

T ’ ! ’
cos(%—z )[p ky,J (kppp)

I pT /
/ j(}.)[lljl(kppp )}' (8&)
Similarly, substituting (7b) in (6) leads to

e weuep‘n pT , ’ ’ ’
[lzup’;_wupl]:_ 2ak? COS(—Q—Z)[‘) kopH D' (K pp)
e

7 ’
- P (ye) | (80

where use has been made of the Wronskian relations for
the Bessel’s functions, and

_[L p=0
e"_{Z, p#0. ©)

Two other equations in terms of the unknown
coefficienits are needed to uniquely specify the field com-
ponents inside the guide. To this end, we utilize the
continuity of the axial components of the electric and the
magnetic fields across the source plane S’. The continuity
of the magnetic field yields
H!-H['=

z

2 2 n(b,cos ne— a, sin ne)

jwﬂ n=0 m=0
2 . m
-kpm81n(72)[

~ Ut T (k,mp') | =0,

Urmer(tZ)(kpmp,)

p=p, 0<¢<m. (10a)
Using the orthogonality relations for the z and ¢ coordi-
nates, one finds

hHI(Z)(kppp/)— L]p];‘ll(kppp ) (10b)

The axial component of the electric field is discontinu-
ous across the source plane S’ by an amount equal to the
surface magnetic-current density, i.e., Eff— Ef=1 (¢)8(z
—2z'), for p=p’ and 0< ¢ <2, which after simplification
gives

. pm ,)
Jwecos( -z

[ U;H;Z)(kppp/) o U;zel‘ll(kppp/)] = i2a
i

(11)

(8a), (8b), (10b), and (11) constitute a set of equations for
the determination of the unknown coefficients. Utilizing
the Wronskian relationship of the Bessel functions one
obtains

’ m7T ’
7Twep’ cOS ( e z )
Urfm = 2k Ern']r:(kpmp/)

pm

’ mw ’
mwep’ cos| — =z

mn = 2k _a

pm

e H D (')
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ma?cos ( — z’)
K ,
mn= ""J > €m‘}'n(kpmp)
2(k,,.a)
mw? cos ( -—az z’)
wim —je—— L gO(, ). (1)
2(k,,a)

Equations (1)-(4) and (12) uniquely define the field of a
magnetic-current filament located at (p,z’) inside a radial
waveguide.

B. Construction of Green’s Functions, Electric Ring

The mathematical routine for deriving the appropriate
Green’s functions for the case of an electric-current fila-
ment is similar to that of the magnetic case. For the sake
of brevity only the main differences together with the final
result will be presented. Aside from subscript m, the
defining equations for the current density and its Fourier
expansion are the same as (1) and (2). Hence, the required
wave functions are given by

Ye= > > n(b,cosnd— a,sinng)

n=0 m=0
mir urfm‘]n(kpmp); p <P,
.cos<——z) 5 . (13a)
a N\ Up,HP(k,p) >0
feo] o0
V= > > (a,cosnp+b,sinng)
n=0 m=0
mn n k L3 < ), S
Sm(mwz) A pP) AN (13b)
a U,ﬁnH,(,z)(kpmp), p>p.
The reciprocity relation for this case is
g(ﬁaxﬁ—ﬁxﬁa)ﬁdeEa-fdv (14)
s 14
Using these relations, one finds
h_ g2 pre] — TWEL y
[eUh— 12Uz ] = ) sm( p )[kppJ,(kppp)
op
pm ,
+W’—J](kppp):l (15a)
e Wwp‘ b P‘” I 7 !
[ewh—Puus] = e sin ( 7 ) [ k,,HiP(k,,0")
Ppm @
— ). 1
jwtp'a H] (kppp) ( Sb)

Now, in contrast to the first case, the axial component of
the electric field E, is continuous across the source plane
s’, but H, is discontinuous by an amount equal to

H!— H'= 1($)8(z - 2"),

Using these conditions and similar steps as the previous

p=p, 0<¢<27. (16)
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case, one finds

mar? sin( T, )
Urrem =J—_——-J (kpmp )
(kpma)®
ma?sin ( ﬁ;ﬁ z’)
o =) ey HP(kymp')
om@
Twpp’ sin(—mc—:—rz’)
Upp=— - Tk omp”)
pm
Twpp’ sin ( mr z’)
=~ B () (17)

pm

which completes the determination of the Green’s func-
tions for this case. The field setup by any combination of
sources of electric and magnetic type may be looked upon
as a superposition problem.

Based on the theory presented, the next section is
devoted to the demonstration of the application of the
previous results to problems involving annular slots of
finite widths. To show the general feature of the theory,
the problem of coupling between two radial waveguides
by annular apertures on the common boundary is consid-
ered, Fig. 2. The exciting source is placed in the central
region of the lower waveguide.

The solution of the problems involving annular or cylin-
drical metallic plates as the scatterers of electromagnetic
fields inside a radial waveguide can be obtained in a
similar manner. That is, using the appropriate Green’s
functions of electric type developed earlier, the solution
can be obtained by integrating the impulse response over
the induced current distributed over the surfaces of the
conductors. The unknown coefficients are then de-
termined by applying the condition of vanishing tangetial
electric field on the surfaces of the conducting objects.
These geometries may have applications as bandpass
filters, and also be used for the design of feed systems
suitable for launching a particular mode or modes for use
in radial waveguides.

FormMuLATION OF Two COUPLED RADIAL
WAVEGUIDES

I1I.

An annular slot on the conducting wall of a radial
waveguide may be viewed as an annular distribution of
magnetic surface current with a density given by

(18)

where 7 is the inward unit vector normal to the aperture
plane. Considering the fact that E, component of the
electric field must vanish at the edges of the slot, it is
expected that for electrically narrow slots, the contribu-
tion from E, to the total field be negligible. Hence, we
assume the aperture electric field to be mainly in the

J.(0',,2") = E X h|aperture
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radial direction, that is,

Tsp's',2) = E, [ pXA]. (19)
Expanding the radial component of the electric field into
a Fourier series of the azimuthal variable ¢ leads to

E (0, $)= gofn(r))(an cosng+b,sinng)  (20)

where f (o) is the radial dependent part of the aperture
electric field. Now, the scattered field due to the slot can
be obtained from the integral of the product of f(p) and
the wave functions over the aperture. To be more specific,
consider the geometry shown in Fig. 2 and assume a TM,,
mode of the radial waveguide [8] to be incident from
region I. This mode is characterized by

Vo= cosoH{(k,p) 21
where

kj=Ve p.

The scattered wave functions inside the two waveguides
are specified by

5= _wwe é

uM8

)
b
0n=0

pry

. mr
-(a, cosng+ b, sinng) cos 7

[ sl ]
ort = , ,
HP(k,,p) 2 Tikmp)
p'fi.(0) dp’
Tk L HP (k)
Pl“?
2 L =) 0
Ao T Erm-men
=i 2 2 2k

. . mT
- (b, cosng — a, sinngd) sin —

_ o ;
o+
H2 (Ko p) 2 (ko)
£,(0) dp” | (22)
Tu(kpm,P) o HP(k,,.0)
[ 5 J
TWe, L 00 =]
2 > 2
/=1 m=0 n=0 "pm,
-(a,cosng+ b, sinng) cos % z
I L 1
d B ’
HP(Kom,p) 2 Tk p)
p'f,(0) dp’
Jn(kpmlp) 5l HIEZ)/(kpm‘p/)
L P
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. . mm
-(b,cosn¢—a,sinnég)sin ——z

b
i 8l
HOGkmo) 777 T(kpmd)
7. dp’ | (23)
GCON
oy

where L is the total number of slots, f; (o) is the radial
dependent part of the electric field over the /th aperture,
and depending on the observation point (p>p" or p<p")
the top or bottom row of the Bessel functions must be
selected. It should be noted that the change of the sign in
the solutions is due to the opposite directions for the
respective inward normals. The continuity condition for
the tangential electric field over the apertures is already
implemented in the solution by insertion of equal field
distributions in the above two sets of wave functions. The
last boundary condition yet to be satisfied is the continu-
ity of the tangential component of the total magnetic field
over the apertures. Before proceeding further it should be
pointed out that the coefficients g, and b, depend entirely
on the functional form of the azimuthal dependence of
the incident field. An examination of the total tangential
magnetic field over the apertures, and using the ortho-
gonality relations for sinusoidal functions over the range
of 0< ¢<2m, reveal that for our particular choice of the
incident mode (21), we have

b,=0, for all n
a,=0, n#1 (24)
a,=1, n=1.

This elimunates the infinite summation over » in (22) and
(23). Generally £, (0') is not a known function. However,
depending on the electrical widths of the slots, this aper-
ture field distribution may be expressed in terms of a
finite surn of a particular set of basis functions with
unknown coefficients. These coefficients are then ob-
tained by applying the boundary condition on the tangen-
tial magnetic field over the apertures. The crudest choice
for the basis functions is the step approximation. That is,
the tangential electric field is assumed to be constant with
respect to p over an electrically thin segment (unit cell) of
the aperture, characterized by a complex constant E,.
Therefore, the total number of unknown field coefficients
is equal to the total number of the unit cells of the
individual slots. Evaluation of these constants can be
performed using the continuity condition of either H, or
H,. The extra boundary condition appearing here is the
resuit of our previous assumption made on the tangential
electric field. The E, component of this field was assumed
to be negligible compared to E,. In fact, it seems quite
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possible to construct an extra set of wave functions
describing the contribution from a p directed magnetic-
current distribution over the apertures. Then, following
the same routine as for the case of the ¢ directed magnetic
current, we can expand E, over the apertures in terms of
a finite sum of the basis functions with complex unknown
coefficients.

The second continuity condition can then be employed
to determine these new unknown coefficients. However,
for the present case, we assume the slots are electrically
narrow and for determination of the unknown field coef-
ficients we utilize only the continuity condition on the H,
component of the total magnetic field over the apertures.
The total number of the matching points equals the total
number of the field coefficients resulting in a set of linear
equations for the unknowns. In the following examples,
the unit cells (segments) are distributed uniformly over the
apertures and the matching points are located at the
center of each cell. )

As an equivalent, principal-mode circuit representation,
it is often desired to associate an admittance to each slot
on the conducting boundaries. Here, we define the current
and the voltage of the ith slot as

1= 277H¢(pi’¢0)pi
e+ (8./2) , ,
V,=f E (o', $0)dp
_(81/2)

(25)

where p, is the radius of the center of the slot and ¢, is an
azimuthal angle, for which the magnitude of E, and H
are maximum. Then the admittance characterizing the ith
slot is defined as

Yi=1/V. (26)

When the field of the slot is due to several modes in the
waveguide the slot admittance can be defined, in a usual
manner, to relate the slot transfer power to the slot
voltage. The power transferred through the slot can be
obtained by integrating the Poynting vector across the
slot, whereas the slot voltage can again be obtained using
(25). In such a case the power coupled through the /th slot
is related to its admittance by

=Y V. @7

lcoupl:d

In the present problem the coupled power and its
associated admittance are positive, when the direction of
power flow is from the lower waveguide into the upper
one. A negative power indicates the return of the power
from the upper waveguide into the lower one.

As a check on the accuracy of the numerical results, the
balance of the power flow from the incident wave into the
transmitted and the coupled waves is examined, and in all
cases satisfactory results are obtained.

IV. NUMERICAL RESULTS AND DISCUSSION

Based on the theory piesented in the earlier sections,
the following cases are considered. The thickness of the
guides are smaller than A/2, therefore, only the dominant
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Fig. 3. The effect of higher order modes on the equivalent admittance
of the slot. Ratio of the edges=2.36, kyb=koa=0.49, ¢, =¢,,=1.00.
kq is free-space propagation constant.

mode propagates. Fig. 3 depicts the variation of the con-
ductance and the susceptance of a single slot as a function
of the radius p of its inner edge. The ratio of the radii of
the slot edges is kept constant and equal to 2.36. A TM,,
excitation is assumed. The dotted lines in Fig. 3 represent
the results obtained by taking only the propagating mode,
whereas the solid lines are due to the inclusion of the first
ten modes which was observed to be sufficient to yield a
convergent solution for all the examples presented in this
work. These results indicate that for most applications the
dominant-mode representation, such as that in the trans-
mission-line theory, adequately describes the slot admit-
tance. However, the accuracy of the results, especially for
central slots where kp is small, is not satisfactory. As a
further check on the dominant-mode approximation, the
field distribution over the slot is also calculated, and is
shown in Fig. 4. The slot is located at a radial distance
k(p—8/2)=2.00, which corresponds to the last plotted
point of Fig. 3. Comparing the results one notes that the
dominant-mode theory yields reasonable results for the
field magnitude, except in the vicinity of the slot’s leading
edge. On the other hand, it fails to describe the phase of
the field accurately. The actual phase of the slot field,
which is calculated by including higher order modes ex-
cited by the slot discontinuity, is virtually constant across
the slot, whereas the result due to the dominant mode
oscillates between 0 and = for adjacent matching points.
For these calculations the slot is divided into 13 cells
(annular rings) of equal width and the field over each cell
is computed by applying the continuity of the tangential
magnetic field at its center. These calculations also show
that the field distribution of an annular slot is similar to
the current distribution on a conducting strip illuminated
by a plane wave, [9]. It should also be noted that even
though the dominant-mode approximation gives inac-
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TABLE I
CONTRIBUTION OF EACH SLOT TO THE TOTAL POWER COUPLED
INTO THE GUIDE NUMBER Two

POWER COUPLED BY EACH SLOT
SLOT NO. (PERCENTAGE OF TOTAL POWER)
1 + 8.49
2 + 2.11
3 - 23.32
4 - 2.77
5 + 52.00
TOTAL COUPLED
POWER + 36.51
N=5 kop, =4.00
€, =2.55 kox=2.00
€, =1.00 koga=025
ky8=0.20 koh=0.49

curate phase distribution, it yields a reasonably accurate
result for the equivalent slot voltage defined in (25). This
is due to the fact that the equivalent slot voltage depends
on the integral of the slot field and the phase oscillation
compensates for inaccuracies in the slot-field amplitude.
As a result, the slot admittance calculated by the domi-
nant mode alone has reasonable accuracy.

Table I is intended to show the strong coupling which
exists between the two regions. Five annular slots of
widths k;6=0.20 and separated by a distance kyx=2.00
couple the two radial waveguides. Since the slots are
electrically narrow, the calculations are carried out by
representing each slot by a single cell. That is, each slot is
characterized by a constant complex field E, which is
found by matching the field at its center. The results for
the coupled power by individual slots show that the ex-
ternal coupling is strong and causes the return of a por-
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Fig. 7. Coupling characteristic of the geometry of Fig. 6 to TMy; mode
of operation. The dotted curve is due to a 4-percent increase in slot
spacing kox.

tion of the coupled power back to the exciting guide
through the slots 3 and 4. An equivalent transmission-line
representation is then a negative slot conductance (a
source) associated with the respective slots.

Here, the power coupled by each slot is evaluated by an
integration of the Poynting vector over the slot’s surface.
A positive power then indicates a power transfer from the
lower waveguide into the upper one. The coupled power is
negative when the integration gives a negative value,
meaning a transfer of power from the upper waveguide
into the lower one. Since the upper waveguide is assumed
infinite in size, the coupled power propagates outward in
that waveguide,

Figs. 5-7 show the coupling characteristics of annular
slot arrays. The coupling characteristic of a single slot
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excited by a TM,, radial mode is shown in Fig. 5. It is
interesting to note that by a proper selection of the
geometry a single narrow slot can effectively couple a
major part of the total power into the upper guide, over a
wide-frequency band with a sharp cutoff characteristic.

Fig. 6 illustrates the coupling characteristic of four slots
for a TMy, excitation. The characteristic of the same
geometry with a TM,, excitation is shown in Fig. 7. The
resonance peak is slightly shifted towards the higher
frequencies and the bandwidth is decreased compared to
TMy, mode of operation. This figure also shows the
sensitivity of the coupling characteristic to the slot spac-
ing. The dotted curve is obtained by increasing the spac-
ing by an amount of 4 percent.

V. SuMMARY AND CONCLUSIONS

Using a boundary-value treatment a method of solution
is established, which gives the field expressions inside a
radial waveguide in the presence of annular-type slots on
the conducting walls or metallic plates inside the guide.
The expressions are general and can be used to determine
the induced currents (electric or magnetic) by accurately
matching the field over the slots or plates and a numerical
solution of the resulting matrix equation. The scattering,
bodies, however, are assumed to be electrically narrow
and the induced currents (electric or magnetic) are, there-
fore, in the azimuthal direction. The method also takes
care of the mutual coupling among the slots or the plates.
The exciting field can have a general form which may be
assumed as a combination of the radial waveguide modes.

In application of the method to two coupled radial
waveguides by an array of annular slot of finite width, it is
shown that higher order modes may have significant effect
on the solution and for a reasonably accurate solution
their contribution must also be included. For most ap-
plications, however, the dominant-mode representation
yields results with a reasonable degree of accuracy for the
equivalent admittance characterizing each slot. The cou-
pling characteristic of the geometry was also studied and
it was shown that by a proper selection of the slot geome-
try and their arrangement in the array, wide or narrow
bandpass characteristics can be obtained.

We, therefore, conclude that due to the inherent high-
frequency capability of the waveguide structures and the
simplicity of the present model such annular-slot arrays
may be used in stripline circuits as a filter or coupler for
dual feed systems. A thorough study of the slot admit-
tance and its relation to the filtering characteristics is
presently under investigation.
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Time-Domain Analysis of
Lumped-Distributed Networks

JAMES LAMAR ALLEN, FELLOW, IEEE

Abstract—A new method for time-domain analysis of networks contain-
ing transmission lines and lumped linear /nonlinear elements is presented.
A key feature of the method is a procedure for generating a system matrix
in a manner that invoives only sums of subnetwork (or element) terms (no
products or quotients). Numerical integration algorithms are used to
reduce the problem to a solution of snarse algebraic eanatione.

I. INTRODUCTION

IME-DOMAIN analysis of lumped-element networks

is well established. Powerful analytical and numerical
techniques are readily available, including the popular
state-space and Laplace transform methods. General pur-
pose computer programs such as SCEPTRE [1] and
SPICE [2] provide easy-to-implement time-domain solu-
tions for complex lumped systems even when nonlinear,
time-varying, and/or active elements are included.

The development of methods for transient analysis of
mixed lumped-distributed networks is of relatively recent
origin, and general techniques that permit, for example,
lossy transmission lines of arbitrary lengths and nonlinear
active lumped elements are not yet available. Yet, the
time-domain analysis of such networks is increasingly
important in design considerations of fast switching dig-
ital integrated circuits, broad-band radar and communica-
tion systems, time-domain reflectometry systems, and in
the study of lightning and EMP effects in systems contain-
ing transmission lines, to mention only a few applications.
The purpose of this paper is to present a technique suit-
able for the analysis of a very general class of lumped-dis-
tributed networks.

During the course of this study, a substantial literature
search was carried out. The most pertinent articles and
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books are listed for the reader’s convenience [3]-[17].
While the technique to be presented is significantly dif-
ferent from the methods found in the literature, the
present concept grew from a “wouldn’t it be nice if...”
thought session following a May 21, 1976, reading of
Silverberg’s [3] paper. Since that time, the new technique
has been successfully applied to a wide variety of prob-
lems. The impact of Silverberg’s work is gratefully ac-
knowledged.

II. SysTEM EQUATION FORMULATION: PART I

Consider systems which have network models consist-
ing of interconnections of linear distributed elements (e.g.,
TEM transmission lines, waveguides), lumped linear or
nonlinear elements, dependent sources, and independent
sources. Partition the network into two parts as shown in
Fig. 1. One part consists of linear (distributed and/or
lumped) elements. The other part contains any lumped
nonlinear or time-varying elements and independent
sources.

Silverberg’s [3] procedure is to solve for the terminal
behavior of the linear part of the network in the frequency
domain and then convert to a terminal time-domain de-
scription by numerical inverse-transform techniques. The
time-domain solution for the whole network is obtained
step-by-step in time at the interface of the two parts, by a
simultaneous solution of a convolution equation repre-
senting the linear part with a differential equation repre-
senting the nonlinear part. The simultaneous solution is
accomplished at each time increment by solving algebraic
equations obtained by application of the trapezoidal in-
tegration rule to the original equations.

For the moment let us focus our attention on the linear
part of the network. Wouldn’t it be nice if the frequency-
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