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Field Solution for Radial Waveguides
with Annular Discontinuities
BAI-IMAN AZARBAR, MEMBER, IEEE, AND LOTFOILLAH SHAFAI

Abstmct--A method is eatabliifmd which gives the interoaf field of a

radfal wavegulde in the presence of amnrfar-type slots on the conducting

walls or rnetaflic scatterers hAde the guide. The exciting field cao have a

generaf form> and the dielectric constant of the region could be bay or

basks. To obtain a solutio~ the induced cnrrents (magnetic current in

case of slot %ype discontinuity) over the scattering bodies are expanded

into a finfte series of suitable basis fwnctions with rmknown coefficients.

The total number of these fonetions is dwedly related to the ekctrfcal

dimensions of the scatterers. me Wmplex eoefficieMs are then obtained

by employing the appropriate Green’s functions and an application of the
tsxwfary conditions over the scattering bodies. The method is then applied

to the prob Iem of corrpffng between two radiafs wrweguides by armufar

slots on the common boundary. It is shown that in general, higher order

modes have sigMcant effect on the solntion, and for a precise evahmtion

of the field their contribution must also be included.

I. INTRODUCTION

T

i WC)-~IMIZNSIONAL arrangement of slots or con-

ducting plates to form resonant arrays are of practi-

cal interest for applications such as bandpass or bandstop

filters. Within a certain frequency band the transmission

coefficient of the array can vary from unity to zero and its

resonance frequency and bandwidth may be controlled by

varying the characteristic dimensions of the array [ 1]–[3].

So far, the subject matter is investigated extensively for

the cases where the basic array element has rectangular,

circular, or cross-shape geometries. However, little infor-

mation is available for the case where the scattering body

is of annular shape.

In the present work, using a boundary value treatment,

a methocl of solution is established which gives the inte-

rior field of a radial waveguide containing annular slots

on its surface or annular metallic plates within the guide

structure A solution for the case in which both type of

discontinuities are present can simply be obtained by

superpos mg the two set of solutions. The application of

the boundary conditions over the slots and the conducting

bodies for determining the currents (electric and mag-

netic) then ensures the electromagnetic coupling between

the two set of solutions. The exciting source is placed at

the center of the radial waveguide and its field may be of
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Fig. 1. Current ring in a radial waveguide (impulse response).

a general nature. The slots and plates are assumed to be

electrically thin enough as to suppress radially directed

induced currents over them. Thus the induced surface

currents (electric and magnetic) on the surfaces of the

array elements ~arein the azimuthal direction.

We develop the solution by first constructing ap-

propriate Green’s functions describing the impulse re-

sponse to an electric (or magnetic) current ring of strength

1 located at p== p’, Fig. 1. The final formulation of the

problem is then obtained by an integration of the impulse

response over tlhe induced source distribution (surface of

the scatterer). IIepending on the electrical dimension of

the element, the induced current may be expressed in.

terms of a finite sum of a suitable set of basis functions

with unknown coefficients. These constants are then ob-

tained by an application of the boundary conditions over

the surface of the scatterer. Depending on the requirecl

degree of accuracy of the solution and the electrical width

of each element, the induced current can be represented

by variety of e]cpressions [4]. For electrically narrow slots

(or plates), current distribution over each element may bc

assumed to be constant with respect to p. In fact, Wait

and Hill [5], [6], by considering the problem of TEM

coupling by a circumferential slot on a coated coaxial

cable, have shc~wn that differences between the results of

higher order approximations for the aperture field distri-

bution and the constant field model are inconsequential.

Thus using the constant field approximation, each ele-

ment of the array is characterized by a complex constant

which is yet to be determined by an application of the

boundary conditions.

For a waveguide-fed slot array, Fig. 2, in which aper-

tures are fed successively by a traveling wave, the effect of
the mutual coupling among the slots cannot be generally

ignored. In the methods based on the waveguide transmis-
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Fig. 2. Two typical coupled radial waveguides of infinite extent.

sion-line concept, the coupling between the array elements

is usually accounted for only the dominant propagating

mode, that is, totally ignoring the effects of higher order

modes created in the vicinity of the slot discontinuities.

Furthermore, the coupling due to the external field is

generally overlooked, However, as it will be shown later,

depending on the arrangement of the slots and their

electrical dimensions, the external coupling can become so

strong as to recouple part of the radiated power back into

the guide containing the exciting source. An equivalent

transmission-line representation then gives a negative

radiation conductance for the respective member (or

members) of the array. The contribution of the higher

order modes can also become appreciable as to turn a

resonant slot, when radiating by itself, into a reactive

element. A distinct advantage of the present approach is

the fact that all mutual coupling effects and the higher

order modes are incorporated automatically in the solu-

tion. This is achieved by the simultaneous evaluation of

the field unknown coefficients through the application of

the boundary conditions.

II. PROBLEM FORMULATION AND SOLUTION

A. Construction of Green’s Functions, Magnetic Ring

In deriving the appropriate Green’s functions for the

problem depicted in Fig. 1, we essentially follow a similar

approach taken by Collin [7] in which field radiated by a

current filament in a cylindrical waveguide is derived for

the case when propagation is taken place in a cylindrical

tube. The basic principle is to expand the radiated field in

terms of a suitable set of waveguide modes with unknown

coefficients. These coefficients are then determined by an

application of the Lorentz Reciprocity theorem.

Consider the geometry shown in Fig. 1 formed by a

radial waveguide of thickness a. The constitutive parame-

ters of the medium between the perfectly conducting

planes are c and p. We assume the guide is infinite extent
in the p direction, resulting in a zero reflection coefficient.

In practice a matched load may simulate this condition.

The source is a magnetic filament of strength lm(+), char-

acterized by

~m(c$) = Im(+)a(p – p’)c?(z – z’);’ (1)

where l~(@) is a general continuous function of the

azimuthal angle @and p’ and z’ are the coordinates of the

source. A time variation of exp (jtit) is assumed and

suppressed throughout. The source function may be ex-

panded in a Fourier series of the form:

~m(+)= i (an Cosnf$ + h Sinn+), 0<4)<277 (2)
~=1)

where a. and b. are the Fourier coefficients. The source

singularity at p = p’ and z = z’ suggests dividing the region

inside the guide into two regions separated by the source

plane S’, namely, region I for p< p’ and region II for

p’< p. Considering the finiteness of the fields in region I

and the radiation condition in region II would lead us to

the following expressions for the wave functions:

Ye= ~ ~ (a. cosn@+ b.sinn~)
~=o ~=f)

( ){mn uAtJn ( kPrnP)~

“Cos ~ z U;#I;2J(kP~p),
;;; (3)

( ){%Qn(kpmP)>
*sin ‘z

U;nH;2)(kP~p),
;’; (4)

a

where the subscripts e and h refer to the TM and TE

fields, respectively, and

kpm=[k’-(?r]’”
k=uv@ . (5)

An application of the Lorentz Reciprocity theorem [8] to a

volume V bounded by the conducting plates and two

arbitrarily located cylindrical surfaces .S1 and S2 in re-

gions I and II, respectively, leads to

jjpax ii– 1? x iia).iids= jjii.~m–z.~– iiajm)do

(6)

where the subscript a represents the auxiliary fields and

their sources, ii i~ the inward unit normal of the closed

boundary S, and Jm is given by (1) and (2). In (6), as long

as the auxiliary fields satisfy the Maxwell’s equations, we

are free to select their form to facilitate the derivation of

the solution. We, therefore, choose two separate sets of

modes, where each set consists of two single modes of TE

and TM types which are the solutions of the source

free-wave equations in volume V. Hence,

[

’32; = (al cos 14 + bl sin lrp) cos (~z)~,(kp,p) ~,a)

()
+:= l(b, cos [~ – a, sinhp) sin ~ z Jl(kPPp)

[

()
V:= (al cos 1+ + bl sin 10) cos ~ z H\2)(lpPP)

()

(7b)
V!= l(bi cos I+ – al sini+) sin &z H}2)(kpPp).

Taking the auxiliary wave functions represented by (7a)

and after some algebraic manipulation, (6) is transformed
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to the following form:

[1’dl’-pu;]= --COS ~ ‘,P ( ~ +’W%PP)

1–/2f&.J[(kppp’). (8a)

Similarly, substituting (7b) in (6) leads to

[

qL~ ’77

‘1=-—I%p; – pup, ( )[COS ~ Z’ p’kPPH\2)’(kPPp’)
2ak2

PP

– 12% Hf2)(kppp’)
1

(8b)

where usc has been made of the Wronskian relations for

the Bessel’s functions, and

{

p=o
5’= ; p+o. .

(9)

Two other equations in terms of the unknown

coefficients are needed to uniquely specify the field com-

ponents inside the guide. To this end, we utilize the

continuity of the axial components of the electric and the

magnetic fields across the source plane S”. The continuity

of the magnetic field yields

~:–~n=
z & SO ~“o n(bncosn~- a~sinm$)

n

()
.k~~ sin ~ z [ U~nH~2)(kP~p’)

-- U;.J.(kp~p’) ] = O, p=p’, 0<~<7r. (lOa)

Using the orthogonality relations for the z and @ coordi-

nates, one finds

U;H~2)(kPpp’) – L$Jl(kp,p’) = O. (lOb)

The axial component of the electric field is discontinu-

ous across the source plane S’ by an amount equal to the

surface magnetic-current density, i.e., Ezrr– ,ZZ1= ~~(+)d(z

—z’), for p = p’ and O< ~ <27, which after simplification

gives

()

pv ,
“@ Cos — z

[ U;H\2)(kpPp’)- U;J,(kP,P’)] = k, aa %

PP

(11)

(8a), (8b), (lOb), and (11) constitute a set of equations for

the determination of the unknown coefficients. Utilizing

the Wronskian relationship of the Bessel functions one

obtains

()

mr
%Y.&p’Cos — z’

fJ:n = a

2kpma
~m%(kP#)

nuep’ Cos
()

= z’
e= a

uinn 2kp~a
e~H~2y(kPMp’)

()m7r2cos ~ z’
u~n = -. j %#n(kpmP’)

2(kp~a)2

()mv’ cos ~ z’

UP?= --j cmH:2) ( kP#;l . (12)
2(kp~a)2

Equations (l)–(4) and (12) uniquely define the field of a

magnetic-current filament located at (p’, z’) inside a radial

waveguide,

B. Construction of Green’s Functions, Electric Ring

The mathematical routine for deriving the appropriate

Green’s functions for the case of an electric-current fila-

ment is similq~ to that of the magnetic case. For the sake

of brevity only the main differences together with the final

result will be presented. Aside from subscript m, the

defining equations for the current density and its Fourier

expansion are the same as (1) and (2). Hence, the required

wave functions are given by

( ){mr z%.J.( kP~p)> p<p’

“Cos ~ z U:nH:2)(kPmp),
P>p, (13a)

. .

( )-(&nJn(kprn~)>
*sin ‘z ;’; (13b]

a U;~H:2)(kPMp),

The reciprocity relation for this case is

Using these relations, one finds

Tap. . ( )[‘r ‘ kPPJ/’(kpPp’)—sm —z
ak~p a

+ l&7
=Jl(k,pp’) I (15a)

mop

( )[
— sin ~ z’ kPPH;c2)(kOpp’)
ak~p

+ l&r I—H\2)(kPpp’) .
jatp’a

(15b)

Now, in contrast to the first case, the axial component c)f’

the electric field E= is continuous across the source plane
s’, but Hz is discontinuous by an amount equal to

~; – H:l = ~(c$)c$(Z – Z’), p=p’, 0<+<:2T. (16)

Using these conditions and similar steps as thle previous
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case, one finds

()m7r2sin = z’
(J& =j J.(k,mp’)

(k,~a;

m7r2sin
()

~ z’

u e_.
mn

H;2)(kP~p’)
‘J (kP~a;

()mv
~upp’ sin — z’

U:n = – a

kP~ a
J;(&mp’)

()mtr
mwpp’ sin — z’

~k=— a
H(2) ’(kPMp’)

k,~a n
(17)

which completes the determination of the Green’s func-

tions for this case. The field setup by any combination of

sources of electric and magnetic type may be looked upon

as a superposition problem.

Based on the theory presented, the next section is

devoted to the demonstration of the application of the

previous results to problems involving annular slots of

finite widths. To show the general feature of the theory,

the problem of coupling between two radial waveguides

by annular apertures on the common boundary is consid-

ered, Fig. 2. The exciting source is placed in the central

region of the lower waveguide.

The solution of the problems involving annular or cylin-

drical metallic plates as the scatterers of electromagnetic

fields inside a radial waveguide can be obtained in a

similar manner. That is, using the appropriate Green’s

functions of electric type developed earlier, the solution

can be obtained by integrating the impulse response over

the induced current distributed over the surfaces of the

conductors. The unknown coefficients are then de-

termined by applying the condition of vanishing tangetial

electric field on the surfaces of the conducting objects.

These geometries may have applications as bandpass

filters, and also be used for the design of feed systems

suitable for launching a particular mode or modes for use

in radial waveguides.

III. FORMULATION OF Two COUPLED RADIAL

WAVEGUIDES

An annular slot on the conducting wall of a radial
waveguide may be viewed as an annular distribution of

magnetic surface current with a density given by

l~(p’, @’,z’)= E x if aperture (18)

where ii is the inward unit vector normal to the aperture

plane. Considering the fact that E@ component of the

electric field must vanish at the edges of the slot, it is

expected that for electrically narrow slots, the contribu-

tion from E@ to the total field be negligible. Hence, we

assume the aperture electric field to be mainly in the

radial direction, that is,

~m(p’, d,z’)aq-l?ixiq. (19)

Expanding the radial component of the electric field into

a Fourier series of the azimuthal variable o leads to

where f.(p) is the radial dependent part of the aperture

electric field. Now, the scattered field due to the slot can

be obtained from the integral of the product of j(p) and

the wave functions over the aperture. To be more specific,

consider the geometry shown in Fig. 2 and assume a TMO1
mode of the radial waveguide [8] to be incident from

region I. This mode is characterized by

where

The scattered wave functions inside the two waveguides

are specified by

L J
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. (b. cosn+– an sinm$) sin ~ z

J.(~pm,P‘)
dP’ (23)

M2y ~pm,P‘)

where L is the total number of slots, fln(p’) is the radial

dependent part of the electric field over the lth aperture,

and depending on the observation point (p> p’ or p <p’)

the top or bottom row of the Bessel functions must be

selected. It should be noted that the change of the sign in

the solutions is due to the opposite directions for the

respective inward normals. The continuity condition for

the tangential electric field over the apertures is already

implemented in the solution by insertion of equal field

distributicms in the above two sets of wave functions. The

last boundary condition yet to be satisfied is the continu-

ity of the tangential component of the total magnetic field

over the apertures. Before proceeding further it should be

pointed out that the coefficients a. and b. depend entirely

on the functional form of the azimuthal dependence of

the incident field. An examination of the total tangential

magnetic field over the apertures, and using the ortho-

gonality relations for sinusoidal functions over the range

of 0< @<277, reveal that for

incident mode (21), we have

[

b.= O,

an= O,

al=l,

our particular choice of the

for all n

n#l (24)

n=l,

This elimmates the infinite summation over n in (22) and

(23). Generally Jfl(p’) is not a known function. However,

depending on the electrical widths of the slots, this aper-

ture field distribution may be expressed in terms of a

finite sum of a particular set of basis functions with

unknown coefficients. These coefficients are then ob-

tained by applying the boundary condition on the tangen-

tial magnetic field over the apertures. The crudest choice

for the basis functions is the step approximation. That is,

the tangential electric field is assumed to be constant with

respect to p over an electrically thin segment (unit cell) of

the aperture, characterized by a complex constant Ei.

Therefore, the total number of unknown field coefficients

is equal to the total number of the unit cells of the

individual slots. Evaluation of these constants can be

performed using the continuity condition of either H+ or
HP. The extra boundary condition appearing here is the

result of four previous assumption made on the tangential

electric field. The E+ component of this field was assumed

to be negligible compared to EP. h fact, it seems quite

possible to construct an extra set of wave functions

describing the contribution from a p directed magnetic-

current distribution over the apertures. Then, following

the same routine as for the case of the @directed magnetic

current, we can expand E+ over the apertures in terms of

a finite sum of the basis functions with complex unknown

coefficients.
The second continuity condition can then be employed

to determine these new unknown coefficients. However,

for the present (case, we assume the slots are electrically

narrow and for determination of the unknown field coef-

ficients we utilize only the continuity condition on the H+

component of the total magnetic field over the apertures.

The total number of the matching points equals the total

number of the field coefficients resulting in a set of linear

equations for the unknowns. In the following examples,

the unit cells (segments) are distributed uniformly over the

apertures and the matching points are located at the

center of each cell.

As an equivalent, principal-mode circuit representation,

it is often desired to associate an admittance to each slot

on the conducting boundaries. Here, we define the current

and the voltage of the i th slot as

II= 2nH+(Pj, @Cl)Pi

y= J“
P,+ (?/2)

EP(p’, +.) dp’
P, – (6/2)

(25)

where pi is the riidius of the center of the slot and @ois an

azimuthal angle, for which the magnitude of Es, and H+

are maximum. Then the admittance characterizing the i th

slot is defined as

y.= 1,/ ~.. (26)

When the field of the slot is due to several modles in the

waveguide the slot admittance can be defined, in a usual

manner, to relate the slot transfer power 1[0 the slot

voltage. The power transferred through the slot can be

obtained by integrating the Poynting vector across the

slot, whereas the slot voltage can again be obtained using

(25). In such a case the power coupled through the ith slot

is related to its admittance by

&,ed= ‘ ~“P (27)

In the present problem the coupled power and its

associated admif tance are positive, when the direction of

power flow is from the lower waveguide into tlhe upper

one. A negative power indicates the return of the power

from the upper waveguide into the lower one.

As a check on the accuracy of the numerical results, the

balance of the power flow from the incident wave into the

transmitted and the coupled waves is examined, and in all

cases satisfactory results are obtained.

IV. NUMERICAL RESULTS AND DiSCUSSiOn

Based on the theory presented in the earlier sections,

the following cases are considered. The thickness of the

guides are small{er than A/2, therefore, only the dominant
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Fig. 3. The effect of higher order modes ontheequivalent adtit~nce
of the slot. Ratio of the edges =2.36, kob=koa=0.49, E,1=c,2=1.00.
kOis free-space propagation constant.

mode propagates. Fig. 3 depicts the variation of the con-

ductance and the susceptance of a single slot as a function

of the radius p of its inner edge. The ratio of the radii of

the slot edges is kept constant and equal to 2.36. A TMm

excitation is assumed. The dotted lines in Fig. 3 represent

the results obtained by taking only the propagating mode,

whereas the solid lines are due to the inclusion of the first

ten modes which was observed to be sufficient to yield a

convergent solution for all the examples presented in this

work. These results indicate that for most applications the

dominant-mode representation, such as that in the trans-

mission-line theory, adequately describes the slot admit-

tance. However, the accuracy of the results, especially for

central slots where kp is small, is not satisfactory. As a

further check on the dominant-mode approximation, the

field distribution over the slot is also calculated, and is

shown in Fig. 4. The slot is located at a radial distance

k(p – 8/2) =2.00, which corresponds to the last plotted

point of Fig. 3. Comparing the results one notes that the

dominant-mode theory yields reasonable results for the

field magnitude, except in the vicinity of the slot’s leading

edge, On the other hand, it fails to describe the phase of

the field accurately. The actual phase of the slot field,

which is calculated by including higher order modes ex-

cited by the slot discontinuity, is virtually constant across

the slot, whereas the result due to the dominant mode

oscillates between O and r for adjacent matching points.

For these calculations the slot is divided into 13 cells

(annular rings) of equal width and the field over each cell

is computed by applying the continuity of the tangential

magnetic field at its center. These calculations also show

that the field distribution of an annular slot is similar to

the current distribution on a conducting strip illuminated

by a plane wave, [9]. It should also be noted that even

though the dominant-mode approximation gives inac-

~A--,,,
fi06ir.
i
< i UNIT CELL

g 0.4 ;, f—_

0 %p —
z b,

02 ‘, --0-- ootvl)$AtjT MoL7E
\

–.– FIRST TEN MODES

o
. .

n 24681012

$

a 0“
2 k“’’’’-’”’-’’’””’‘ ‘ ‘24 6 8 10 .~

.6@L o
Distonce from the !eodmg eciy of the slot
In multiples of unit cell width

Fig. 4. Field distribution over the slot; ko~ = 2.72, k~ = 3.36, koa = kob
= 0.49, 6,, = E,2= 1.00.

TABLE I
CONTRIBUTIONOFEACH SLOTTO THE TOTAL POWER COUPLED

INTO THE GUIDE NUMBER Two

S LOT NO.

1

2

3

4

5

OTAL COUPLED
POWER

POIVER COUPLED BY EACti S LOT
[PERCENTAGE OF TOTAL pOWER]

+ S.49

+ 2.11

- 23.32

- 2.77

+ 52.00

+ 36.51

N=5 kopl = 4.00
c,, = 2.55 kox = 2.OO
6,2= 1.00 koa = 0.25

ko8 = 0.20 kob = 0.49

curate phase distribution, it yields a reasonably accurate

result for the equivalent slot voltage defined in- (25). This

is due to the fact that the equivalent slot voltage depends

on the integral of the dot field and the phase oscillation

compensates for inaccuracies in the slot-field amplitude.
As a result, the slot admittance calculated by the domi-

nant mode alone has reasonable accuracy.

Table I is intended to show “the strong coupling which

exists between the two regions. Five annular slots of

widths ko?l = 0.20 and separated by a distance kox = 2.00

couple the two radial waveguides. Since the slots are

electrically narrow, the calculations are carried out by

representing each slot by a single cell. That is, each slot is

characterized by a constant complex field Ei which is

found by matching the field at its center. The results for

the coupled power by individual slots show that the ex-

ternal coupling is strong and causes the return of a por-
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Fig. 5. Coupling characteristic of a single-slot T% exciting mode;
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dimensicms are at .fO

100

b“ t

oL—iL_Au
098 103 I 02 I 04 106 I 08 I 10

flfo

Fig. 6. Coupting characteristic of a four-slot T% exciting mode;
6,2=5.20, 6,1=2.60, koa = /CofJ= 0.34, I@= 0.08, k~l = 10.08, /cox=
4.05.

Fig. 7. Coupling characteristic of the geometry of Fig. 6 to TMOI mode
of operation. The dotted curve is due to a 4-percent increase in slot
spacing k~.

tiori of the coupled power back to the exciting guide

through the slots 3 and 4, An equivalent transmission-line

representation is then a nega~ive slot conductance (a

source) associated with the respective slots.

Here, the power coupled by each slot is evaluated by an

integration of the Poynting vector over the slot’s surface.

A positive power then indicates a power transfer from the

lower waveguide into the upper one. The coupled power is

negative when the integration gives a negative value,
meaning a transfer of power from the upper waveguide

into the lower one. Since the upper waveguide is assumed

infinite in size, the coupled power props gates outward in

that waveguide.

Figs. 5-7 show the coupling characteristics of annular

slot arra,ys. The coupling characteristic of a single slot

889

excited by a T Moo radial mode is shown in F;Lg. 5. lt is

interesting to note that by a proper selection of the

geometry a single narrow slot can effectively couple a

major part of the total power into the upper guide, over a

wide-frequency band with a sharp cutoff characteristic.

Fig. 6 illustrates the coupling characteristic of four slots

for a TMW excitation. The characteristic of the same

geometry with a TMOI excitation is shown in Fig. 7. The

resonance pealk is slightly shifted towards the higher

frequencies and the bandwidth is decreased compared to

TI’vfm mode of operation. This figure also shows th,:

sensitivity of the coupling characteristic to the slot spac-

ing. The dottecl curve is obtained by increasing the spac-

ing by an amount of 4 percent.

V. SUMMARY AND CONCLUSIONS

Using a bou~mdary-value treatment a method of solution

is established, which gives the field expressions inside a

radial waveguide in the presence of annular-type slots on

the conducting walls or metallic plates insicle the guide.

The expressions are general and can be used to determine

the induced currents (electric or magnetic) by accurately

matching the field over the slots or plates and a numerical

solution of the resulting matrix equation. Tlhe scattering

bodies, however, are assumed to be electrically narrow

and the induced currents (electric or magnetic) are, there-

fore, in the azimuthal direction. The method also takes

care of the mutual coupling among the slots or the plates.

The exciting field can have a general form which may be

assumed as a combination of the radial wavegiiide modes.

In application of the method to two coupled radial

waveguides by an array of annular slot of finite width, it is

shown that higher order modes may have significant effect

on the solution and for a reasonably accurate solution

their contribution must also be included. For most ap-

plications, however, the dominant-mode representation

yields results with a reasonable degree of accurficy for the

equivalent admittance characterizing each slot. The cou-

pling characteristic of the geometry was also studied and

it was shown that by a proper selection of the slot geome-

try and their arrangement in the array, wide or narrow

bandpass characteristics can be obtained.

We, therefore, conclude that due to the in&rent high-

frequency capability of the waveguide structures and the

simplicity of the present model such annular-slot arrays

may be used in stripline circuits as a filter or coupler far

dual feed systems. A thorough study of the slot admit-

tance and its relation to the filtering characteristics is

presently under investigation.
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Time-Domain Analysis of
Lumped-Distributed Networks

JAMES LAMAR ALLEN, FELLOW, IEEE

Abwuct-A new method for time-domain mrafysis of networks contain-

ing transmission fries and hoped finear/nonfinear elements is presented.

A key feature of the method is a procedure for generating a system matrix

in a manner that involves only sums of subnetwork (or element) terms (no

products or quotients). Numericaf integration algorithms are used to

reduce the rwoblem to a solution of maw akehraic eouatime.

I. INTRODUCTION

T IME-DOMAIN analysis of lumped-element networks

is well established. Powerful analytical and numerical

techniques are readily available, including the popular

state-space and Laplace transform methods. General pur-

pose computer programs such as SCEPTRE [1] and

SPICE [2] provide easy-to-implement time-domain solu-

tions for complex lumped systems even when nonlinear,

time-varying, and/or active elements are included.

The development of methods for transient analysis of

mixed lumped-distributed networks is of relatively recent

origin, and general techniques that permit, for example,

lossy transmission lines of arbitrary lengths and nonlinear

active lumped elements are not yet available. Yet, the

time-domain analysis of such networks is increasingly

important in design considerations of fast switching dig-

ital integrated circuits, broad-band radar and communica-

tion systems, time-domain reflectometry systems, and in

the study of lightning and EMP effects in systems contain-
ing transmission lines, to mention only a few applications.

The purpose of this paper is to present a technique suit-

able for the analysis of a very general class of lumped-dis-

tributed networks.

During the course of this study, a substantial literature

search was carried out. The most pertinent articles and
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books are listed for the reader’s convenience [3]-[17].

While the technique to be presented is significantly dif-

ferent from the methods found in the literature, the

present concept grew from a “wouldn’t it be nice if... ”

thought session following a May 21, 1976, reading of

Silverberg’s [3] paper. Since that time, the new technique

has been successfully applied to a wide variety of prob-

lems. The impact of Silverberg’s work is gratefully ac-

knowledged.

11. SYSTEM EQUATION FORMULATION: PART I

Consider systems which have network models consist-

ing of interconnections of linear distributed elements (e.g.,

TEM transmission lines, waveguides), lumped linear or

nonlinear elements, dependent sources, and independent

sources. Partition the network into two parts as shown in

Fig. 1. One part consists of linear (distributed and/or

lumped) elements. The other part contains any lumped

nonlinear or time-varying elements and independent

sources.

Silverberg’s [3] procedure is to solve for the terminal

behavior of the linear part of the network in the frequency

domain and then convert to a terminal time-domain de-

scription by numerical inverse-transform techniques. The

time-domain solution for the whole network is obtained
step-by-step in time at the interface of the two parts, by a

simultaneous solution of a convolution equation repre-

senting the linear part with a differential equation repre-

senting the nonlinear part. The simultaneous solution is

accomplished at each time increment by solving algebraic

equations obtained by application of the trapezoidal in-

tegration rule to the original equations.

For the moment let us focus our attention on the linear

part of the network. Wouldn’t it be nice if the frequency-
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